容器(Collections)
Python附带一个模块,它包含许多容器数据类型,名字叫作collections。我们将讨论它的作用和用法。
我们将讨论的是:
- defaultdict
- counter
- deque
- namedtuple
- enum.Enum (包含在Python 3.4以上)
defaultdict
众所周知,在Python中如果访问字典中不存在的键,会引发KeyError异常(JavaScript中如果对象中不存在某个属性,则返回undefined)。但是有时候,字典中的每个键都存在默认值是非常方便的。例如下面的例子:
1 | strings = ('puppy', 'kitten', 'puppy', 'puppy', |
该例子统计strings中某个单词出现的次数,并在counts字典中作记录。单词每出现一次,在counts相对应的键所存的值数字加1。但是事实上,运行这段代码会抛出KeyError异常,出现的时机是每个单词第一次统计的时候,因为Python的dict中不存在默认值的说法,可以在Python命令行中验证:
1 | counts = dict() |
使用判断语句检查
既然如此,首先可能想到的方法是在单词第一次统计的时候,在counts中相应的键存下默认值1。这需要在处理的时候添加一个判断语句:
1 | strings = ('puppy', 'kitten', 'puppy', 'puppy', |
使用dict.setdefault()方法
也可以通过dict.setdefault()方法来设置默认值:
1 | strings = ('puppy', 'kitten', 'puppy', 'puppy', |
dict.setdefault()方法接收两个参数,第一个参数是健的名称,第二个参数是默认值。假如字典中不存在给定的键,则返回参数中提供的默认值;反之,则返回字典中保存的值。利用dict.setdefault()方法的返回值可以重写for循环中的代码,使其更加简洁:
1 | strings = ('puppy', 'kitten', 'puppy', 'puppy', |
使用collections.defaultdict类
以上的方法虽然在一定程度上解决了dict中不存在默认值的问题,但是这时候我们会想,有没有一种字典它本身提供了默认值的功能呢?答案是肯定的,那就是collections.defaultdict。
defaultdict类就好像是一个dict,但是它是使用一个类型来初始化的:
1 | from collections import defaultdict |
defaultdict类的初始化函数接受一个类型作为参数,当所访问的键不存在的时候,可以实例化一个值作为默认值:
1 | dd['foo'] |
需要注意的是,这种形式的默认值只有在通过dict[key]或者dict.__getitem__(key)访问的时候才有效,这其中的原因在下文会介绍。
1 | from collections import defaultdict |
该类除了接受类型名称作为初始化函数的参数之外,还可以使用任何不带参数的可调用函数,到时该函数的返回结果作为默认值,这样使得默认值的取值更加灵活。下面用一个例子来说明,如何用自定义的不带参数的函数zero()作为初始化函数的参数:
1 | from collections import defaultdict |
利用collections.defaultdict来解决最初的单词统计问题,代码如下:
1 | from collections import defaultdict |
defaultdict 类是如何实现的
通过上面的内容,想必大家已经了解了defaultdict类的用法,那么在defaultdict类中又是如何来实现默认值的功能呢?这其中的关键是使用了看__missing__()这个方法:
1 | from collections import defaultdict |
通过查看__missing__()方法的docstring,可以看出当使用__getitem__()方法访问一个不存在的键时(dict[key]这种形式实际上是__getitem__()方法的简化形式),会调用__missing__()方法获取默认值,并将该键添加到字典中去。
counter
Counter是一个计数器,它可以帮助我们针对某项数据进行计数。比如它可以用来计算每个人喜欢多少种颜色:
1 | from collections import Counter |
我们也可以在利用它统计一个文件,例如:
1 | with open('filename', 'rb') as f: |
还有
1 | from collections import Counter |
deque
deque提供了一个双端队列,你可以从头/尾两端添加或删除元素。要想使用它,首先我们要从collections中导入deque模块:
1 | from collections import deque |
现在,你可以创建一个deque对象。
1 | d = deque() |
它的用法就像python的list,并且提供了类似的方法,例如:
1 | d = deque() |
你可以从两端取出(pop)数据:
1 | d = deque(range(5)) |
我们也可以限制这个列表的大小,当超出你设定的限制时,数据会从对队列另一端被挤出去(pop)。
最好的解释是给出一个例子:
1 | d = deque(maxlen=30) |
现在当你插入30条数据时,最左边一端的数据将从队列中删除。
你还可以从任一端扩展这个队列中的数据:
1 | d = deque([1,2,3,4,5]) |
namedtuple
您可能已经熟悉元组。
一个元组是一个不可变的列表,你可以存储一个数据的序列,它和命名元组(namedtuples)非常像,但有几个关键的不同。
主要相似点是都不像列表,你不能修改元组中的数据。为了获取元组中的数据,你需要使用整数作为索引:
1 | man = ('Ali', 30) |
嗯,那namedtuples是什么呢?它把元组变成一个针对简单任务的容器。你不必使用整数索引来访问一个namedtuples的数据。你可以像字典(dict)一样访问namedtuples,但namedtuples是不可变的。
1 | from collections import namedtuple |
现在你可以看到,我们可以用名字来访问namedtuple中的数据。我们再继续分析它。一个命名元组(namedtuple)有两个必需的参数。它们是元组名称和字段名称。
在上面的例子中,我们的元组名称是Animal,字段名称是’name’,’age’和’type’。namedtuple让你的元组变得自文档了。你只要看一眼就很容易理解代码是做什么的。
你也不必使用整数索引来访问一个命名元组,这让你的代码更易于维护。
而且,namedtuple的每个实例没有对象字典,所以它们很轻量,与普通的元组比,并不需要更多的内存。这使得它们比字典更快。
然而,要记住它是一个元组,属性值在namedtuple中是不可变的,所以下面的代码不能工作:
1 | from collections import namedtuple |
你应该使用命名元组来让代码自文档,它们向后兼容于普通的元组,这意味着你可以既使用整数索引,也可以使用名称来访问namedtuple:
1 | from collections import namedtuple |
最后,你可以将一个命名元组转换为字典,方法如下:
1 | from collections import namedtuple |
enum.Enum (Python 3.4+)
另一个有用的容器是枚举对象,它属于enum模块,存在于Python 3.4以上版本中(同时作为一个独立的PyPI包enum34供老版本使用)。Enums(枚举类型)基本上是一种组织各种东西的方式。
让我们回顾一下上一个’Animal’命名元组的例子。它有一个type字段,问题是,type是一个字符串。那么问题来了,万一程序员输入了Cat,因为他按到了Shift键,或者输入了’CAT’,甚至’kitten’?解决的方法是为这样的枚举类型定义一个class类型,然后,每个常量都是class的一个唯一实例。Python提供了Enum类来实现这个功能:
1 | from enum import Enum |
这样我们就获得了Month类型的枚举类,可以直接使用Month.Jan来引用一个常量,或者枚举它的所有成员:
1 | for name, member in Month.__members__.items(): |
value属性则是自动赋给成员的int常量,默认从1开始计数。
如果需要更精确地控制枚举类型,可以从Enum派生出自定义类:
1 | from collections import namedtuple |
现在,我们进行一些测试:
1 | charlie.type == tom.type |
这样就没那么容易错误,我们必须更明确,而且我们应该只使用定义后的枚举类型。
有三种方法访问枚举数据,例如以下方法都可以获取到’cat’的值:
1 | Species(1) |
参考资料