python编程进阶(8):容器Collections

容器(Collections)

Python附带一个模块,它包含许多容器数据类型,名字叫作collections。我们将讨论它的作用和用法。

我们将讨论的是:

  • defaultdict
  • counter
  • deque
  • namedtuple
  • enum.Enum (包含在Python 3.4以上)

defaultdict

众所周知,在Python中如果访问字典中不存在的键,会引发KeyError异常(JavaScript中如果对象中不存在某个属性,则返回undefined)。但是有时候,字典中的每个键都存在默认值是非常方便的。例如下面的例子:

1
2
3
4
5
6
strings = ('puppy', 'kitten', 'puppy', 'puppy',
'weasel', 'puppy', 'kitten', 'puppy')
counts = {}

for kw in strings:
counts[kw] += 1 # 第一次统计时没有键对应的默认值

该例子统计strings中某个单词出现的次数,并在counts字典中作记录。单词每出现一次,在counts相对应的键所存的值数字加1。但是事实上,运行这段代码会抛出KeyError异常,出现的时机是每个单词第一次统计的时候,因为Python的dict中不存在默认值的说法,可以在Python命令行中验证:

1
2
3
4
5
6
7
>>> counts = dict()
>>> counts
{}
>>> counts['puppy'] += 1
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
KeyError: 'puppy'

使用判断语句检查

既然如此,首先可能想到的方法是在单词第一次统计的时候,在counts中相应的键存下默认值1。这需要在处理的时候添加一个判断语句:

1
2
3
4
5
6
7
8
9
10
11
12
strings = ('puppy', 'kitten', 'puppy', 'puppy',
'weasel', 'puppy', 'kitten', 'puppy')
counts = {}

for kw in strings:
if kw not in counts:
counts[kw] = 1
else:
counts[kw] += 1

# counts:
# {'puppy': 5, 'weasel': 1, 'kitten': 2}

使用dict.setdefault()方法

也可以通过dict.setdefault()方法来设置默认值:

1
2
3
4
5
6
7
strings = ('puppy', 'kitten', 'puppy', 'puppy',
'weasel', 'puppy', 'kitten', 'puppy')
counts = {}

for kw in strings:
counts.setdefault(kw, 0)
counts[kw] += 1

dict.setdefault()方法接收两个参数,第一个参数是健的名称,第二个参数是默认值。假如字典中不存在给定的键,则返回参数中提供的默认值;反之,则返回字典中保存的值。利用dict.setdefault()方法的返回值可以重写for循环中的代码,使其更加简洁:

1
2
3
4
5
6
strings = ('puppy', 'kitten', 'puppy', 'puppy',
'weasel', 'puppy', 'kitten', 'puppy')
counts = {}

for kw in strings:
counts[kw] = counts.setdefault(kw, 0) + 1

使用collections.defaultdict

以上的方法虽然在一定程度上解决了dict中不存在默认值的问题,但是这时候我们会想,有没有一种字典它本身提供了默认值的功能呢?答案是肯定的,那就是collections.defaultdict

defaultdict类就好像是一个dict,但是它是使用一个类型来初始化的

1
2
3
4
>>> from collections import defaultdict
>>> dd = defaultdict(list) # 接受一个list类型作为初始化参数
>>> dd
defaultdict(<type 'list'>, {})

defaultdict类的初始化函数接受一个类型作为参数,当所访问的键不存在的时候,可以实例化一个值作为默认值:

1
2
3
4
5
6
7
>>> dd['foo']
[]
>>> dd
defaultdict(<type 'list'>, {'foo': []})
>>> dd['bar'].append('quux')
>>> dd
defaultdict(<type 'list'>, {'foo': [], 'bar': ['quux']})

要注意的是,这种形式的默认值只有在通过dict[key]或者dict.__getitem__(key)访问的时候才有效,这其中的原因在下文会介绍。

1
2
3
4
5
6
7
8
9
10
11
>>> from collections import defaultdict
>>> dd = defaultdict(list)
>>> 'something' in dd
False
>>> dd.pop('something')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
KeyError: 'pop(): dictionary is empty'
>>> dd.get('something')
>>> dd['something']
[]

该类除了接受类型名称作为初始化函数的参数之外,还可以使用任何不带参数的可调用函数,到时该函数的返回结果作为默认值,这样使得默认值的取值更加灵活。下面用一个例子来说明,如何用自定义的不带参数的函数zero()作为初始化函数的参数:

1
2
3
4
5
6
7
8
9
10
11
>>> from collections import defaultdict
>>> def zero():
... return 0
...
>>> dd = defaultdict(zero)
>>> dd
defaultdict(<function zero at 0xb7ed2684>, {})
>>> dd['foo']
0
>>> dd
defaultdict(<function zero at 0xb7ed2684>, {'foo': 0})

利用collections.defaultdict来解决最初的单词统计问题,代码如下:

1
2
3
4
5
6
7
8
from collections import defaultdict

strings = ('puppy', 'kitten', 'puppy', 'puppy',
'weasel', 'puppy', 'kitten', 'puppy')
counts = defaultdict(lambda: 0) # 使用lambda来定义简单的函数

for s in strings:
counts[s] += 1

defaultdict 类是如何实现的

通过上面的内容,想必大家已经了解了defaultdict类的用法,那么在defaultdict类中又是如何来实现默认值的功能呢?这其中的关键是使用了看__missing__()这个方法

1
2
3
4
5
6
>>> from collections import defaultdict
>>> print defaultdict.__missing__.__doc__
__missing__(key) # Called by __getitem__ for missing key; pseudo-code:
if self.default_factory is None: raise KeyError(key)
self[key] = value = self.default_factory()
return value

通过查看__missing__()方法的docstring,可以看出当使用__getitem__()方法访问一个不存在的键时(dict[key]这种形式实际上是__getitem__()方法的简化形式),会调用__missing__()方法获取默认值,并将该键添加到字典中去

counter

Counter是一个计数器,它可以帮助我们针对某项数据进行计数。比如它可以用来计算每个人喜欢多少种颜色:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
from collections import Counter

colours = (
('Yasoob', 'Yellow'),
('Ali', 'Blue'),
('Arham', 'Green'),
('Ali', 'Black'),
('Yasoob', 'Red'),
('Ahmed', 'Silver'),
)

favs = Counter(name for name, colour in colours)
print(favs)

## 输出:
## Counter({
## 'Yasoob': 2,
## 'Ali': 2,
## 'Arham': 1,
## 'Ahmed': 1
## })

我们也可以在利用它统计一个文件,例如:

1
2
3
with open('filename', 'rb') as f:
line_count = Counter(f)
print(line_count)

还有

1
2
3
4
5
6
7
>>> from collections import Counter
>>> c = Counter()
>>> for ch in 'programming':
... c[ch] = c[ch] + 1
...
>>> c
Counter({'g': 2, 'm': 2, 'r': 2, 'a': 1, 'i': 1, 'o': 1, 'n': 1, 'p': 1})

deque

deque提供了一个双端队列,你可以从头/尾两端添加或删除元素。要想使用它,首先我们要从collections中导入deque模块:

1
from collections import deque

现在,你可以创建一个deque对象。

1
d = deque()

它的用法就像python的list,并且提供了类似的方法,例如:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
d = deque()
d.append('1')
d.append('2')
d.append('3')

print(len(d))

## 输出: 3

print(d[0])

## 输出: '1'

print(d[-1])

## 输出: '3'

你可以从两端取出(pop)数据:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
d = deque(range(5))
print(len(d))

## 输出: 5

d.popleft()

## 输出: 0

d.pop()

## 输出: 4

print(d)

## 输出: deque([1, 2, 3])

我们也可以限制这个列表的大小,当超出你设定的限制时,数据会从对队列另一端被挤出去(pop)。
最好的解释是给出一个例子:

1
d = deque(maxlen=30)

现在当你插入30条数据时,最左边一端的数据将从队列中删除。

你还可以从任一端扩展这个队列中的数据:

1
2
3
4
5
6
d = deque([1,2,3,4,5])
d.extendleft([0])
d.extend([6,7,8])
print(d)

## 输出: deque([0, 1, 2, 3, 4, 5, 6, 7, 8])

namedtuple

您可能已经熟悉元组。
一个元组是一个不可变的列表,你可以存储一个数据的序列,它和命名元组(namedtuples)非常像,但有几个关键的不同。
主要相似点是都不像列表,你不能修改元组中的数据。为了获取元组中的数据,你需要使用整数作为索引

1
2
3
4
man = ('Ali', 30)
print(man[0])

## 输出: Ali

嗯,那namedtuples是什么呢?它把元组变成一个针对简单任务的容器。你不必使用整数索引来访问一个namedtuples的数据。你可以像字典(dict)一样访问namedtuples,但namedtuples是不可变的

1
2
3
4
5
6
7
8
9
10
11
12
from collections import namedtuple

Animal = namedtuple('Animal', 'name age type')
perry = Animal(name="perry", age=31, type="cat")

print(perry)

## 输出: Animal(name='perry', age=31, type='cat')

print(perry.name)

## 输出: 'perry'

现在你可以看到,我们可以用名字来访问namedtuple中的数据。我们再继续分析它。一个命名元组(namedtuple)有两个必需的参数。它们是元组名称和字段名称。

在上面的例子中,我们的元组名称是Animal,字段名称是’name’,’age’和’type’。
namedtuple让你的元组变得自文档了。你只要看一眼就很容易理解代码是做什么的。
你也不必使用整数索引来访问一个命名元组,这让你的代码更易于维护
而且,namedtuple的每个实例没有对象字典所以它们很轻量,与普通的元组比,并不需要更多的内存。这使得它们比字典更快。

然而,要记住它是一个元组,属性值在namedtuple中是不可变的,所以下面的代码不能工作

1
2
3
4
5
6
7
8
9
10
from collections import namedtuple

Animal = namedtuple('Animal', 'name age type')
perry = Animal(name="perry", age=31, type="cat")
perry.age = 42

## 输出:
## Traceback (most recent call last):
## File "", line 1, in
## AttributeError: can't set attribute

你应该使用命名元组来让代码自文档它们向后兼容于普通的元组这意味着你可以既使用整数索引,也可以使用名称来访问namedtuple

1
2
3
4
5
6
7
from collections import namedtuple

Animal = namedtuple('Animal', 'name age type')
perry = Animal(name="perry", age=31, type="cat")
print(perry[0])

## 输出: perry

最后,你可以将一个命名元组转换为字典,方法如下:

1
2
3
4
5
6
7
from collections import namedtuple

Animal = namedtuple('Animal', 'name age type')
perry = Animal(name="Perry", age=31, type="cat")
print(perry._asdict())

## 输出: OrderedDict([('name', 'Perry'), ('age', 31), ...

enum.Enum (Python 3.4+)

另一个有用的容器是枚举对象,它属于enum模块,存在于Python 3.4以上版本中(同时作为一个独立的PyPI包enum34供老版本使用)。Enums(枚举类型)基本上是一种组织各种东西的方式。

让我们回顾一下上一个’Animal’命名元组的例子。它有一个type字段,问题是,type是一个字符串。那么问题来了,万一程序员输入了Cat,因为他按到了Shift键,或者输入了’CAT’,甚至’kitten’?解决的方法是为这样的枚举类型定义一个class类型,然后,每个常量都是class的一个唯一实例。Python提供了Enum类来实现这个功能:

1
2
3
from enum import Enum

Month = Enum('Month', ('Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'))

这样我们就获得了Month类型的枚举类,可以直接使用Month.Jan来引用一个常量,或者枚举它的所有成员:

1
2
for name, member in Month.__members__.items():
print(name, '=>', member, ',', member.value)

value属性则是自动赋给成员的int常量,默认从1开始计数。

如果需要更精确地控制枚举类型,可以从Enum派生出自定义类:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
from collections import namedtuple
from enum import Enum

@unique # @unique装饰器可以帮助我们检查保证没有重复值。
class Species(Enum):
cat = 1
dog = 2
horse = 3
aardvark = 4
butterfly = 5
owl = 6
platypus = 7
dragon = 8
unicorn = 9
# 依次类推

# 但我们并不想关心同一物种的年龄,所以我们可以使用一个别名
kitten = 1 # (译者注:幼小的猫咪)
puppy = 2 # (译者注:幼小的狗狗)

Animal = namedtuple('Animal', 'name age type')
perry = Animal(name="Perry", age=31, type=Species.cat)
drogon = Animal(name="Drogon", age=4, type=Species.dragon)
tom = Animal(name="Tom", age=75, type=Species.cat)
charlie = Animal(name="Charlie", age=2, type=Species.kitten)

现在,我们进行一些测试:

1
2
3
4
>>> charlie.type == tom.type
True
>>> charlie.type
<Species.cat: 1>

这样就没那么容易错误,我们必须更明确,而且我们应该只使用定义后的枚举类型

有三种方法访问枚举数据,例如以下方法都可以获取到’cat’的值:

1
2
3
Species(1)
Species['cat']
Species.cat

参考资料

【1】:http://kodango.com/understand-defaultdict-in-python

-------------Thanks for Reading!-------------